summaryrefslogtreecommitdiff
path: root/series/statistics.go
blob: 96ec93b3a142422d619f24bc368f522243eedee0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
package series

import (
	"github.com/network-quality/goresponsiveness/utilities"
	"golang.org/x/exp/constraints"
)

func SeriesStandardDeviation[Data utilities.Number, Bucket constraints.Ordered](s WindowSeries[Data, Bucket]) (bool, float64) {
	complete := s.Complete()

	inputValues := s.GetValues()

	actualValues := utilities.Filter(inputValues, func(d utilities.Optional[Data]) bool {
		return utilities.IsSome[Data](d)
	})
	values := utilities.Fmap(actualValues, func(d utilities.Optional[Data]) Data { return utilities.GetSome[Data](d) })

	return complete, utilities.CalculateStandardDeviation[Data](values)
}

func Percentile[Data utilities.Number, Bucket constraints.Ordered](s WindowSeries[Data, Bucket], p uint) (bool, Data) {
	complete := s.Complete()

	inputValues := s.GetValues()

	actualValues := utilities.Filter(inputValues, func(d utilities.Optional[Data]) bool {
		return utilities.IsSome[Data](d)
	})
	values := utilities.Fmap(actualValues, func(d utilities.Optional[Data]) Data { return utilities.GetSome[Data](d) })

	return complete, utilities.CalculatePercentile(values, p)
}

func AllSequentialIncreasesLessThan[Data utilities.Number, Bucket constraints.Ordered](s WindowSeries[Data, Bucket], limit float64,
) (bool, bool, float64) {
	complete := s.Complete()

	inputValues := s.GetValues()

	actualValues := utilities.Filter(utilities.Reverse(inputValues), func(d utilities.Optional[Data]) bool {
		return utilities.IsSome[Data](d)
	})
	values := utilities.Fmap(actualValues, func(d utilities.Optional[Data]) Data { return utilities.GetSome[Data](d) })

	result, actualLimit := utilities.AllSequentialIncreasesLessThan(values, limit)
	return complete, result, actualLimit
}

func CalculateAverage[Data utilities.Number, Bucket constraints.Ordered](s WindowSeries[Data, Bucket]) (bool, float64) {
	complete := s.Complete()

	inputValues := s.GetValues()

	actualValues := utilities.Filter(inputValues, func(d utilities.Optional[Data]) bool {
		return utilities.IsSome[Data](d)
	})
	values := utilities.Fmap(actualValues, func(d utilities.Optional[Data]) Data { return utilities.GetSome[Data](d) })

	return complete, utilities.CalculateAverage(values)
}

func TrimmedMean[Data utilities.Number, Bucket constraints.Ordered](s WindowSeries[Data, Bucket], trim int) (bool, float64, []Data) {
	complete := s.Complete()

	inputValues := s.GetValues()

	actualValues := utilities.Filter(inputValues, func(d utilities.Optional[Data]) bool {
		return utilities.IsSome[Data](d)
	})
	values := utilities.Fmap(actualValues, func(d utilities.Optional[Data]) Data { return utilities.GetSome[Data](d) })

	trimmedMean, trimmedElements := utilities.TrimmedMean(values, trim)
	return complete, trimmedMean, trimmedElements
}