summaryrefslogtreecommitdiff
path: root/ms/ms.go
blob: 76b4b0abcf4e26bb2243a85d5a5099706e30763c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*
 * This file is part of Go Responsiveness.
 *
 * Go Responsiveness is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software Foundation,
 * either version 2 of the License, or (at your option) any later version.
 * Go Responsiveness is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
 * PARTICULAR PURPOSE. See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with Go Responsiveness. If not, see <https://www.gnu.org/licenses/>.
 */

package ms

import (
	"math"

	"github.com/network-quality/goresponsiveness/saturating"
	"github.com/network-quality/goresponsiveness/utilities"
	"golang.org/x/exp/constraints"
)

type MathematicalSeries[T constraints.Float | constraints.Integer] struct {
	elements_count int
	elements       []T
	index          int
	divisor        *saturating.SaturatingInt
}

func NewMathematicalSeries[T constraints.Float | constraints.Integer](instants_count int) *MathematicalSeries[T] {
	return &MathematicalSeries[T]{
		elements:       make([]T, instants_count),
		elements_count: instants_count,
		divisor:        saturating.NewSaturatingInt(instants_count),
	}
}

func (ma *MathematicalSeries[T]) AddElement(measurement T) {
	ma.elements[ma.index] = measurement
	ma.divisor.Add(1)
	// Invariant: ma.index always points to the oldest measurement
	ma.index = (ma.index + 1) % ma.elements_count
}

func (ma *MathematicalSeries[T]) CalculateAverage() float64 {
	total := T(0)
	for i := 0; i < ma.elements_count; i++ {
		total += ma.elements[i]
	}
	return float64(total) / float64(ma.divisor.Value())
}

func (ma *MathematicalSeries[T]) AllSequentialIncreasesLessThan(limit float64) (_ bool, maximumSequentialIncrease float64) {

	// If we have not yet accumulated a complete set of intervals,
	// this is false.
	if ma.divisor.Value() != ma.elements_count {
		return false, 0
	}

	// Invariant: ma.index always points to the oldest (see AddMeasurement
	// above)
	oldestIndex := ma.index
	previous := ma.elements[oldestIndex]
	maximumSequentialIncrease = 0
	for i := 1; i < ma.elements_count; i++ {
		currentIndex := (oldestIndex + i) % ma.elements_count
		current := ma.elements[currentIndex]
		percentChange := utilities.SignedPercentDifference(current, previous)
		previous = current
		if percentChange > limit {
			return false, percentChange
		}
	}
	return true, maximumSequentialIncrease
}

/*
 * N.B.: Overflow is possible -- use at your discretion!
 */
func (ma *MathematicalSeries[T]) StandardDeviation() (bool, T) {

	// If we have not yet accumulated a complete set of intervals,
	// we are always false.
	if ma.divisor.Value() != ma.elements_count {
		return false, T(0)
	}

	// From https://www.mathsisfun.com/data/standard-deviation-calculator.html
	// Yes, for real!

	// Calculate the average of the numbers ...
	average := ma.CalculateAverage()

	// Calculate the square of each of the elements' differences from the mean.
	differences_squared := make([]float64, ma.elements_count)
	for index, value := range ma.elements {
		differences_squared[index] = math.Pow(float64(value-T(average)), 2)
	}

	// The variance is the average of the squared differences.
	// So, we need to ...

	// Accumulate all those squared differences.
	sds := float64(0)
	for _, dss := range differences_squared {
		sds += dss
	}

	// And then divide that total by the number of elements
	variance := sds / float64(ma.divisor.Value())

	// Finally, the standard deviation is the square root
	// of the variance.
	sd := T(math.Sqrt(variance))
	//sd := T(variance)

	return true, sd
}

func (ma *MathematicalSeries[T]) IsNormallyDistributed() bool {
	valid, stddev := ma.StandardDeviation()
	// If there are not enough values in our series to generate a standard
	// deviation, then we cannot do this calculation either.
	if !valid {
		return false
	}
	avg := float64(ma.CalculateAverage())

	fstddev := float64(stddev)
	within := float64(0)
	for _, v := range ma.Values() {
		if (avg-fstddev) <= float64(v) && float64(v) <= (avg+fstddev) {
			within++
		}
	}
	return within/float64(ma.divisor.Value()) >= 0.68
}

func (ma *MathematicalSeries[T]) Values() []T {
	return ma.elements
}

func (ma *MathematicalSeries[T]) Size() int {
	return len(ma.elements)
}