1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
// Implements a data structure for quality attenuation.
package qualityattenuation
import (
"fmt"
"math"
"github.com/influxdata/tdigest"
)
type cablelabsHist struct {
hist [256]float64
}
func (h *cablelabsHist) GetHistogram() [256]float64 {
return h.hist
}
func (h *cablelabsHist) AddSample(sample float64) error {
bin := 0
if sample < 0.050 {
// Round down
bin = int(sample / 0.0005)
h.hist[bin]++
} else if sample < 0.150 {
bin = int((sample - 0.050) / 0.001)
h.hist[100+bin]++
} else if sample < 1.150 {
bin = int((sample - 0.150) / 0.020)
h.hist[200+bin]++
} else if sample < 1.400 {
bin = 250
h.hist[bin]++
} else if sample < 3.000 {
bin = int((sample - 1.400) / 0.400)
h.hist[251+bin]++
} else {
bin = 255
h.hist[bin]++
}
return nil
}
type SimpleQualityAttenuation struct {
empiricalDistribution *tdigest.TDigest
offset float64
offsetSum float64
offsetSumOfSquares float64
numberOfSamples int64
numberOfLosses int64
latencyEqLossThreshold float64
minimumLatency float64
maximumLatency float64
}
type percentileLatencyPair struct {
percentile float64
perfectLatency float64
uselessLatency float64
}
type qualityRequirement struct {
latencyRequirements []percentileLatencyPair
}
func NewSimpleQualityAttenuation() *SimpleQualityAttenuation {
return &SimpleQualityAttenuation{
empiricalDistribution: tdigest.NewWithCompression(50),
offset: 0.1,
offsetSum: 0.0,
offsetSumOfSquares: 0.0,
numberOfSamples: 0,
numberOfLosses: 0,
latencyEqLossThreshold: 15.0, // Count latency greater than this value as a loss.
minimumLatency: 0.0,
maximumLatency: 0.0,
}
}
func (qa *SimpleQualityAttenuation) AddSample(sample float64) error {
if sample <= 0.0 {
// Ignore zero or negative samples because they cannot be valid.
// TODO: This should raise a warning and/or trigger error handling.
return fmt.Errorf("sample is zero or negative")
}
qa.numberOfSamples++
if sample > qa.latencyEqLossThreshold {
qa.numberOfLosses++
return nil
} else {
if qa.minimumLatency == 0.0 || sample < qa.minimumLatency {
qa.minimumLatency = sample
}
if qa.maximumLatency == 0.0 || sample > qa.maximumLatency {
qa.maximumLatency = sample
}
qa.empiricalDistribution.Add(sample, 1)
qa.offsetSum += sample - qa.offset
qa.offsetSumOfSquares += (sample - qa.offset) * (sample - qa.offset)
}
return nil
}
func (qa *SimpleQualityAttenuation) GetNumberOfLosses() int64 {
return qa.numberOfLosses
}
func (qa *SimpleQualityAttenuation) GetNumberOfSamples() int64 {
return qa.numberOfSamples
}
func (qa *SimpleQualityAttenuation) GetPercentile(percentile float64) float64 {
return qa.empiricalDistribution.Quantile(percentile / 100)
}
func (qa *SimpleQualityAttenuation) GetAverage() float64 {
return qa.offsetSum/float64(qa.numberOfSamples-qa.numberOfLosses) + qa.offset
}
func (qa *SimpleQualityAttenuation) GetVariance() float64 {
number_of_latency_samples := float64(qa.numberOfSamples) - float64(qa.numberOfLosses)
return (qa.offsetSumOfSquares - (qa.offsetSum * qa.offsetSum / number_of_latency_samples)) / (number_of_latency_samples - 1)
}
func (qa *SimpleQualityAttenuation) GetStandardDeviation() float64 {
return math.Sqrt(qa.GetVariance())
}
func (qa *SimpleQualityAttenuation) GetMinimum() float64 {
return qa.minimumLatency
}
func (qa *SimpleQualityAttenuation) GetMaximum() float64 {
return qa.maximumLatency
}
func (qa *SimpleQualityAttenuation) GetMedian() float64 {
return qa.GetPercentile(50.0)
}
func (qa *SimpleQualityAttenuation) GetLossPercentage() float64 {
return 100 * float64(qa.numberOfLosses) / float64(qa.numberOfSamples)
}
func (qa *SimpleQualityAttenuation) GetRPM() float64 {
return 60.0 / qa.GetAverage()
}
func (qa *SimpleQualityAttenuation) GetPDV(percentile float64) float64 {
return qa.GetPercentile(percentile) - qa.GetMinimum()
}
func (qa *SimpleQualityAttenuation) PrintCablelabsStatisticsSummary() string {
// Prints a digest based on Cablelabs Latency Measurements Metrics and Architeture, CL-TR-LM-Arch-V01-221123, https://www.cablelabs.com/specifications/CL-TR-LM-Arch
// The recommendation is to report the following percentiles: 0, 10, 25, 50, 75, 90, 95, 99, 99.9 and 100
return fmt.Sprintf("Cablelabs Statistics Summary:\n"+
"0th Percentile: %f\n"+
"10th Percentile: %f\n"+
"25th Percentile: %f\n"+
"50th Percentile: %f\n"+
"75th Percentile: %f\n"+
"90th Percentile: %f\n"+
"95th Percentile: %f\n"+
"99th Percentile: %f\n"+
"99.9th Percentile: %f\n"+
"100th Percentile: %f\n",
qa.GetPercentile(0.0),
qa.GetPercentile(10.0),
qa.GetPercentile(25.0),
qa.GetPercentile(50.0),
qa.GetPercentile(75.0),
qa.GetPercentile(90.0),
qa.GetPercentile(95.0),
qa.GetPercentile(99.0),
qa.GetPercentile(99.9),
qa.GetPercentile(100.0))
}
// Merge two quality attenuation values. This operation assumes the two samples have the same offset and latency_eq_loss_threshold, and
// will return an error if they do not.
// It also assumes that the two quality attenuation values are measurements of the same thing (path, outcome, etc.).
func (qa *SimpleQualityAttenuation) Merge(other *SimpleQualityAttenuation) error {
// Check that offsets are the same
if qa.offset != other.offset ||
qa.latencyEqLossThreshold != other.latencyEqLossThreshold {
return fmt.Errorf("merge quality attenuation values with different offset or latency_eq_loss_threshold")
}
for _, centroid := range other.empiricalDistribution.Centroids() {
mean := centroid.Mean
weight := centroid.Weight
qa.empiricalDistribution.Add(mean, weight)
}
qa.offsetSum += other.offsetSum
qa.offsetSumOfSquares += other.offsetSumOfSquares
qa.numberOfSamples += other.numberOfSamples
qa.numberOfLosses += other.numberOfLosses
if other.minimumLatency < qa.minimumLatency {
qa.minimumLatency = other.minimumLatency
}
if other.maximumLatency > qa.maximumLatency {
qa.maximumLatency = other.maximumLatency
}
return nil
}
func (qa *SimpleQualityAttenuation) EmpiricalDistributionHistogram() []float64 {
// Convert the tdigest to a histogram on the format defined by CableLabs, with the following bucket edges:
// 100 bins from 0 to 50 ms, each 0.5 ms wide
// 100 bins from 50 to 100 ms, each 1 ms wide
// 50 bins from 150 to 1150 ms, each 20 ms wide
// 1 bin from 1150 to 1400 ms, 250 ms wide
// 4 bins from 1400 to 3000 ms, each 400 ms wide
hist := make([]float64, 256)
for i := 0; i < 100; i++ {
hist[i] = float64(qa.numberOfSamples) * (qa.empiricalDistribution.CDF(float64(i+1)*0.0005) - qa.empiricalDistribution.CDF(float64(i)*0.0005))
}
for i := 100; i < 200; i++ {
hist[i] = float64(qa.numberOfSamples) * (qa.empiricalDistribution.CDF(0.050+float64(i-99)*0.001) - qa.empiricalDistribution.CDF(0.050+float64(i-100)*0.001))
}
for i := 200; i < 250; i++ {
hist[i] = float64(qa.numberOfSamples) * (qa.empiricalDistribution.CDF(0.150+float64(i-199)*0.020) - qa.empiricalDistribution.CDF(0.150+float64(i-200)*0.020))
}
for i := 250; i < 251; i++ {
hist[i] = float64(qa.numberOfSamples) * (qa.empiricalDistribution.CDF(1.150+0.250) - qa.empiricalDistribution.CDF(1.150))
}
for i := 251; i < 255; i++ {
hist[i] = float64(qa.numberOfSamples) * (qa.empiricalDistribution.CDF(1.400+float64(i-250)*0.400) - qa.empiricalDistribution.CDF(1.400+float64(i-251)*0.400))
}
hist[255] = float64(qa.numberOfSamples) * (1 - qa.empiricalDistribution.CDF(3.000))
return hist
}
// Compute the Quality of Outcome (QoO) for a given quality requirement.
// The details and motivation for the QoO metric are described in the following internet draft:
// https://datatracker.ietf.org/doc/draft-olden-ippm-qoo/
func (qa *SimpleQualityAttenuation) QoO(requirement qualityRequirement) float64 {
QoO := 100.0
for _, percentileLatencyPair := range requirement.latencyRequirements {
score := 0.0
percentile := percentileLatencyPair.percentile
perfectLatency := percentileLatencyPair.perfectLatency
uselessLatency := percentileLatencyPair.uselessLatency
latency := qa.GetPercentile(percentile)
if latency >= uselessLatency {
score = 0.0
} else if latency <= perfectLatency {
score = 100.0
} else {
score = 100 * ((uselessLatency - latency) / (uselessLatency - perfectLatency))
}
if score < QoO {
QoO = score
}
}
return QoO
}
func (qa *SimpleQualityAttenuation) GetGamingQoO() float64 {
qualReq := qualityRequirement{}
qualReq.latencyRequirements = []percentileLatencyPair{}
qualReq.latencyRequirements = append(qualReq.latencyRequirements, percentileLatencyPair{percentile: 50.0, perfectLatency: 0.030, uselessLatency: 0.150})
qualReq.latencyRequirements = append(qualReq.latencyRequirements, percentileLatencyPair{percentile: 95.0, perfectLatency: 0.065, uselessLatency: 0.200})
qualReq.latencyRequirements = append(qualReq.latencyRequirements, percentileLatencyPair{percentile: 99.0, perfectLatency: 0.100, uselessLatency: 0.250})
return qa.QoO(qualReq)
}
|