summaryrefslogtreecommitdiff
path: root/packages/cli/src/core/gemini-client.ts
blob: 19dba40f9509464a3bfad07d9ba633d03159feb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
/**
 * @license
 * Copyright 2025 Google LLC
 * SPDX-License-Identifier: Apache-2.0
 */

import {
  GenerateContentConfig,
  GoogleGenAI,
  Part,
  Chat,
  Type,
  SchemaUnion,
  PartListUnion,
  Content,
} from '@google/genai';
import { CoreSystemPrompt } from './prompts.js';
import process from 'node:process';
import { toolRegistry } from '../tools/tool-registry.js';
import { getFolderStructure } from '../utils/getFolderStructure.js';
import { GeminiEventType, GeminiStream } from './gemini-stream.js';
import { Config } from '../config/config.js';
import { Turn } from './turn.js';

export class GeminiClient {
  private config: Config;
  private ai: GoogleGenAI;
  private generateContentConfig: GenerateContentConfig = {
    temperature: 0,
    topP: 1,
  };
  private readonly MAX_TURNS = 100;

  constructor(config: Config) {
    this.config = config;
    this.ai = new GoogleGenAI({ apiKey: config.getApiKey() });
  }

  private async getEnvironment(): Promise<Part> {
    const cwd = process.cwd();
    const today = new Date().toLocaleDateString(undefined, {
      weekday: 'long',
      year: 'numeric',
      month: 'long',
      day: 'numeric',
    });
    const platform = process.platform;

    const folderStructure = await getFolderStructure(cwd);

    const context = `
  Okay, just setting up the context for our chat.
  Today is ${today}.
  My operating system is: ${platform}
  I'm currently working in the directory: ${cwd}
  ${folderStructure}
          `.trim();

    return { text: context };
  }

  async startChat(): Promise<Chat> {
    const envPart = await this.getEnvironment();
    const model = this.config.getModel();
    const tools = toolRegistry.getToolSchemas();

    try {
      const chat = this.ai.chats.create({
        model,
        config: {
          systemInstruction: CoreSystemPrompt,
          ...this.generateContentConfig,
          tools,
        },
        history: [
          // --- Add the context as a single part in the initial user message ---
          {
            role: 'user',
            parts: [envPart], // Pass the single Part object in an array
          },
          // --- Add an empty model response to balance the history ---
          {
            role: 'model',
            parts: [{ text: 'Got it. Thanks for the context!' }], // A slightly more conversational model response
          },
          // --- End history modification ---
        ],
      });
      return chat;
    } catch (error) {
      console.error('Error initializing Gemini chat session:', error);
      const message = error instanceof Error ? error.message : 'Unknown error.';
      throw new Error(`Failed to initialize chat: ${message}`);
    }
  }

  async *sendMessageStream(
    chat: Chat,
    request: PartListUnion,
    signal?: AbortSignal,
  ): GeminiStream {
    let turns = 0;

    try {
      while (turns < this.MAX_TURNS) {
        turns++;
        // A turn either yields a text response or returns
        // function responses to be used in the next turn.
        // This callsite is responsible to handle the buffered
        // function responses and use it on the next turn.
        const turn = new Turn(chat);
        const resultStream = turn.run(request, signal);

        for await (const event of resultStream) {
          yield event;
        }
        const fnResponses = turn.getFunctionResponses();
        if (fnResponses.length > 0) {
          request = fnResponses;
          continue; // use the responses in the next turn
        }

        const history = chat.getHistory();
        const checkPrompt = `Analyze *only* the content and structure of your immediately preceding response (your last turn in the conversation history). Based *strictly* on that response, determine who should logically speak next: the 'user' or the 'model' (you).

  **Decision Rules (apply in order):**

  1.  **Model Continues:** If your last response explicitly states an immediate next action *you* intend to take (e.g., "Next, I will...", "Now I'll process...", "Moving on to analyze...", indicates an intended tool call that didn't execute), OR if the response seems clearly incomplete (cut off mid-thought without a natural conclusion), then the **'model'** should speak next.
  2.  **Question to User:** If your last response ends with a direct question specifically addressed *to the user*, then the **'user'** should speak next.
  3.  **Waiting for User:** If your last response completed a thought, statement, or task *and* does not meet the criteria for Rule 1 (Model Continues) or Rule 2 (Question to User), it implies a pause expecting user input or reaction. In this case, the **'user'** should speak next.

  **Output Format:**

  Respond *only* in JSON format according to the following schema. Do not include any text outside the JSON structure.

  \`\`\`json
  {
    "type": "object",
    "properties": {
      "reasoning": {
          "type": "string",
          "description": "Brief explanation justifying the 'next_speaker' choice based *strictly* on the applicable rule and the content/structure of the preceding turn."
      },
      "next_speaker": {
        "type": "string",
        "enum": ["user", "model"],
        "description": "Who should speak next based *only* on the preceding turn and the decision rules."
      }
    },
    "required": ["next_speaker", "reasoning"]
  \`\`\`
  }`;

        // Schema Idea
        const responseSchema: SchemaUnion = {
          type: Type.OBJECT,
          properties: {
            reasoning: {
              type: Type.STRING,
              description:
                "Brief explanation justifying the 'next_speaker' choice based *strictly* on the applicable rule and the content/structure of the preceding turn.",
            },
            next_speaker: {
              type: Type.STRING,
              enum: ['user', 'model'], // Enforce the choices
              description:
                'Who should speak next based *only* on the preceding turn and the decision rules',
            },
          },
          required: ['reasoning', 'next_speaker'],
        };

        try {
          // Use the new generateJson method, passing the history and the check prompt
          const parsedResponse = await this.generateJson(
            [
              ...history,
              {
                role: 'user',
                parts: [{ text: checkPrompt }],
              },
            ],
            responseSchema,
          );

          // Safely extract the next speaker value
          const nextSpeaker: string | undefined =
            typeof parsedResponse?.next_speaker === 'string'
              ? parsedResponse.next_speaker
              : undefined;

          if (nextSpeaker === 'model') {
            request = { text: 'alright' }; // Or potentially a more meaningful continuation prompt
          } else {
            // 'user' should speak next, or value is missing/invalid. End the turn.
            break;
          }
        } catch (error) {
          console.error(
            `[Turn ${turns}] Failed to get or parse next speaker check:`,
            error,
          );
          // If the check fails, assume user should speak next to avoid infinite loops
          break;
        }
      }

      if (turns >= this.MAX_TURNS) {
        console.warn(
          'sendMessageStream: Reached maximum tool call turns limit.',
        );
        yield {
          type: GeminiEventType.Content,
          value:
            '\n\n[System Notice: Maximum interaction turns reached. The conversation may be incomplete.]',
        };
      }
    } catch (error: unknown) {
      // TODO(jbd): There is so much of packing/unpacking of error types.
      // Figure out a way to remove the redundant work.
      if (error instanceof Error && error.name === 'AbortError') {
        console.log('Gemini stream request aborted by user.');
        throw error;
      } else {
        console.error(`Error during Gemini stream or tool interaction:`, error);
        const message = error instanceof Error ? error.message : String(error);
        yield {
          type: GeminiEventType.Content,
          value: `\n\n[Error: An unexpected error occurred during the chat: ${message}]`,
        };
        throw error;
      }
    }
  }

  /**
   * Generates structured JSON content based on conversational history and a schema.
   * @param contents The conversational history (Content array) to provide context.
   * @param schema The SchemaUnion defining the desired JSON structure.
   * @returns A promise that resolves to the parsed JSON object matching the schema.
   * @throws Throws an error if the API call fails or the response is not valid JSON.
   */
  async generateJson(
    contents: Content[],
    schema: SchemaUnion,
  ): Promise<Record<string, unknown>> {
    const model = this.config.getModel();
    try {
      const result = await this.ai.models.generateContent({
        model,
        config: {
          ...this.generateContentConfig,
          systemInstruction: CoreSystemPrompt,
          responseSchema: schema,
          responseMimeType: 'application/json',
        },
        contents, // Pass the full Content array
      });

      const responseText = result.text;
      if (!responseText) {
        throw new Error('API returned an empty response.');
      }

      try {
        const parsedJson = JSON.parse(responseText);
        // TODO: Add schema validation if needed
        return parsedJson;
      } catch (parseError) {
        console.error('Failed to parse JSON response:', responseText);
        throw new Error(
          `Failed to parse API response as JSON: ${parseError instanceof Error ? parseError.message : String(parseError)}`,
        );
      }
    } catch (error) {
      console.error('Error generating JSON content:', error);
      const message =
        error instanceof Error ? error.message : 'Unknown API error.';
      throw new Error(`Failed to generate JSON content: ${message}`);
    }
  }
}