1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
# MCP servers with the Gemini CLI
This document provides a guide to configuring and using Model Context Protocol (MCP) servers with the Gemini CLI.
## What is an MCP server?
An MCP server is an application that exposes tools and resources to the Gemini CLI through the Model Context Protocol, allowing it to interact with external systems and data sources. MCP servers act as a bridge between the Gemini model and your local environment or other services like APIs.
An MCP server enables the Gemini CLI to:
- **Discover tools:** List available tools, their descriptions, and parameters through standardized schema definitions.
- **Execute tools:** Call specific tools with defined arguments and receive structured responses.
- **Access resources:** Read data from specific resources (though the Gemini CLI primarily focuses on tool execution).
With an MCP server, you can extend the Gemini CLI's capabilities to perform actions beyond its built-in features, such as interacting with databases, APIs, custom scripts, or specialized workflows.
## Core Integration Architecture
The Gemini CLI integrates with MCP servers through a sophisticated discovery and execution system built into the core package (`packages/core/src/tools/`):
### Discovery Layer (`mcp-client.ts`)
The discovery process is orchestrated by `discoverMcpTools()`, which:
1. **Iterates through configured servers** from your `settings.json` `mcpServers` configuration
2. **Establishes connections** using appropriate transport mechanisms (Stdio, SSE, or Streamable HTTP)
3. **Fetches tool definitions** from each server using the MCP protocol
4. **Sanitizes and validates** tool schemas for compatibility with the Gemini API
5. **Registers tools** in the global tool registry with conflict resolution
### Execution Layer (`mcp-tool.ts`)
Each discovered MCP tool is wrapped in a `DiscoveredMCPTool` instance that:
- **Handles confirmation logic** based on server trust settings and user preferences
- **Manages tool execution** by calling the MCP server with proper parameters
- **Processes responses** for both the LLM context and user display
- **Maintains connection state** and handles timeouts
### Transport Mechanisms
The Gemini CLI supports three MCP transport types:
- **Stdio Transport:** Spawns a subprocess and communicates via stdin/stdout
- **SSE Transport:** Connects to Server-Sent Events endpoints
- **Streamable HTTP Transport:** Uses HTTP streaming for communication
## How to set up your MCP server
The Gemini CLI uses the `mcpServers` configuration in your `settings.json` file to locate and connect to MCP servers. This configuration supports multiple servers with different transport mechanisms.
### Configure the MCP server in settings.json
You can configure MCP servers at the global level in the `~/.gemini/settings.json` file or in your project's root directory, create or open the `.gemini/settings.json` file. Within the file, add the `mcpServers` configuration block.
### Configuration Structure
Add an `mcpServers` object to your `settings.json` file:
```json
{ ...file contains other config objects
"mcpServers": {
"serverName": {
"command": "path/to/server",
"args": ["--arg1", "value1"],
"env": {
"API_KEY": "$MY_API_TOKEN"
},
"cwd": "./server-directory",
"timeout": 30000,
"trust": false
}
}
}
```
### Configuration Properties
Each server configuration supports the following properties:
#### Required (one of the following)
- **`command`** (string): Path to the executable for Stdio transport
- **`url`** (string): SSE endpoint URL (e.g., `"http://localhost:8080/sse"`)
- **`httpUrl`** (string): HTTP streaming endpoint URL
#### Optional
- **`args`** (string[]): Command-line arguments for Stdio transport
- **`headers`** (object): Custom HTTP headers when using `httpUrl`
- **`env`** (object): Environment variables for the server process. Values can reference environment variables using `$VAR_NAME` or `${VAR_NAME}` syntax
- **`cwd`** (string): Working directory for Stdio transport
- **`timeout`** (number): Request timeout in milliseconds (default: 600,000ms = 10 minutes)
- **`trust`** (boolean): When `true`, bypasses all tool call confirmations for this server (default: `false`)
### Example Configurations
#### Python MCP Server (Stdio)
```json
{
"mcpServers": {
"pythonTools": {
"command": "python",
"args": ["-m", "my_mcp_server", "--port", "8080"],
"cwd": "./mcp-servers/python",
"env": {
"DATABASE_URL": "$DB_CONNECTION_STRING",
"API_KEY": "${EXTERNAL_API_KEY}"
},
"timeout": 15000
}
}
}
```
#### Node.js MCP Server (Stdio)
```json
{
"mcpServers": {
"nodeServer": {
"command": "node",
"args": ["dist/server.js", "--verbose"],
"cwd": "./mcp-servers/node",
"trust": true
}
}
}
```
#### Docker-based MCP Server
```json
{
"mcpServers": {
"dockerizedServer": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"API_KEY",
"-v",
"${PWD}:/workspace",
"my-mcp-server:latest"
],
"env": {
"API_KEY": "$EXTERNAL_SERVICE_TOKEN"
}
}
}
}
```
#### HTTP-based MCP Server
```json
{
"mcpServers": {
"httpServer": {
"httpUrl": "http://localhost:3000/mcp",
"timeout": 5000
}
}
}
```
#### HTTP-based MCP Server with Custom Headers
```json
{
"mcpServers": {
"httpServerWithAuth": {
"httpUrl": "http://localhost:3000/mcp",
"headers": {
"Authorization": "Bearer your-api-token",
"X-Custom-Header": "custom-value",
"Content-Type": "application/json"
},
"timeout": 5000
}
}
}
```
## Discovery Process Deep Dive
When the Gemini CLI starts, it performs MCP server discovery through the following detailed process:
### 1. Server Iteration and Connection
For each configured server in `mcpServers`:
1. **Status tracking begins:** Server status is set to `CONNECTING`
2. **Transport selection:** Based on configuration properties:
- `httpUrl` → `StreamableHTTPClientTransport`
- `url` → `SSEClientTransport`
- `command` → `StdioClientTransport`
3. **Connection establishment:** The MCP client attempts to connect with the configured timeout
4. **Error handling:** Connection failures are logged and the server status is set to `DISCONNECTED`
### 2. Tool Discovery
Upon successful connection:
1. **Tool listing:** The client calls the MCP server's tool listing endpoint
2. **Schema validation:** Each tool's function declaration is validated
3. **Name sanitization:** Tool names are cleaned to meet Gemini API requirements:
- Invalid characters (non-alphanumeric, underscore, dot, hyphen) are replaced with underscores
- Names longer than 63 characters are truncated with middle replacement (`___`)
### 3. Conflict Resolution
When multiple servers expose tools with the same name:
1. **First registration wins:** The first server to register a tool name gets the unprefixed name
2. **Automatic prefixing:** Subsequent servers get prefixed names: `serverName__toolName`
3. **Registry tracking:** The tool registry maintains mappings between server names and their tools
### 4. Schema Processing
Tool parameter schemas undergo sanitization for Gemini API compatibility:
- **`$schema` properties** are removed
- **`additionalProperties`** are stripped
- **`anyOf` with `default`** have their default values removed (Vertex AI compatibility)
- **Recursive processing** applies to nested schemas
### 5. Connection Management
After discovery:
- **Persistent connections:** Servers that successfully register tools maintain their connections
- **Cleanup:** Servers that provide no usable tools have their connections closed
- **Status updates:** Final server statuses are set to `CONNECTED` or `DISCONNECTED`
## Tool Execution Flow
When the Gemini model decides to use an MCP tool, the following execution flow occurs:
### 1. Tool Invocation
The model generates a `FunctionCall` with:
- **Tool name:** The registered name (potentially prefixed)
- **Arguments:** JSON object matching the tool's parameter schema
### 2. Confirmation Process
Each `DiscoveredMCPTool` implements sophisticated confirmation logic:
#### Trust-based Bypass
```typescript
if (this.trust) {
return false; // No confirmation needed
}
```
#### Dynamic Allow-listing
The system maintains internal allow-lists for:
- **Server-level:** `serverName` → All tools from this server are trusted
- **Tool-level:** `serverName.toolName` → This specific tool is trusted
#### User Choice Handling
When confirmation is required, users can choose:
- **Proceed once:** Execute this time only
- **Always allow this tool:** Add to tool-level allow-list
- **Always allow this server:** Add to server-level allow-list
- **Cancel:** Abort execution
### 3. Execution
Upon confirmation (or trust bypass):
1. **Parameter preparation:** Arguments are validated against the tool's schema
2. **MCP call:** The underlying `CallableTool` invokes the server with:
```typescript
const functionCalls = [
{
name: this.serverToolName, // Original server tool name
args: params,
},
];
```
3. **Response processing:** Results are formatted for both LLM context and user display
### 4. Response Handling
The execution result contains:
- **`llmContent`:** Raw response parts for the language model's context
- **`returnDisplay`:** Formatted output for user display (often JSON in markdown code blocks)
## How to interact with your MCP server
### Using the `/mcp` Command
The `/mcp` command provides comprehensive information about your MCP server setup:
```bash
/mcp
```
This displays:
- **Server list:** All configured MCP servers
- **Connection status:** `CONNECTED`, `CONNECTING`, or `DISCONNECTED`
- **Server details:** Configuration summary (excluding sensitive data)
- **Available tools:** List of tools from each server with descriptions
- **Discovery state:** Overall discovery process status
### Example `/mcp` Output
```
MCP Servers Status:
📡 pythonTools (CONNECTED)
Command: python -m my_mcp_server --port 8080
Working Directory: ./mcp-servers/python
Timeout: 15000ms
Tools: calculate_sum, file_analyzer, data_processor
🔌 nodeServer (DISCONNECTED)
Command: node dist/server.js --verbose
Error: Connection refused
🐳 dockerizedServer (CONNECTED)
Command: docker run -i --rm -e API_KEY my-mcp-server:latest
Tools: docker__deploy, docker__status
Discovery State: COMPLETED
```
### Tool Usage
Once discovered, MCP tools are available to the Gemini model like built-in tools. The model will automatically:
1. **Select appropriate tools** based on your requests
2. **Present confirmation dialogs** (unless the server is trusted)
3. **Execute tools** with proper parameters
4. **Display results** in a user-friendly format
## Status Monitoring and Troubleshooting
### Connection States
The MCP integration tracks several states:
#### Server Status (`MCPServerStatus`)
- **`DISCONNECTED`:** Server is not connected or has errors
- **`CONNECTING`:** Connection attempt in progress
- **`CONNECTED`:** Server is connected and ready
#### Discovery State (`MCPDiscoveryState`)
- **`NOT_STARTED`:** Discovery hasn't begun
- **`IN_PROGRESS`:** Currently discovering servers
- **`COMPLETED`:** Discovery finished (with or without errors)
### Common Issues and Solutions
#### Server Won't Connect
**Symptoms:** Server shows `DISCONNECTED` status
**Troubleshooting:**
1. **Check configuration:** Verify `command`, `args`, and `cwd` are correct
2. **Test manually:** Run the server command directly to ensure it works
3. **Check dependencies:** Ensure all required packages are installed
4. **Review logs:** Look for error messages in the CLI output
5. **Verify permissions:** Ensure the CLI can execute the server command
#### No Tools Discovered
**Symptoms:** Server connects but no tools are available
**Troubleshooting:**
1. **Verify tool registration:** Ensure your server actually registers tools
2. **Check MCP protocol:** Confirm your server implements the MCP tool listing correctly
3. **Review server logs:** Check stderr output for server-side errors
4. **Test tool listing:** Manually test your server's tool discovery endpoint
#### Tools Not Executing
**Symptoms:** Tools are discovered but fail during execution
**Troubleshooting:**
1. **Parameter validation:** Ensure your tool accepts the expected parameters
2. **Schema compatibility:** Verify your input schemas are valid JSON Schema
3. **Error handling:** Check if your tool is throwing unhandled exceptions
4. **Timeout issues:** Consider increasing the `timeout` setting
#### Sandbox Compatibility
**Symptoms:** MCP servers fail when sandboxing is enabled
**Solutions:**
1. **Docker-based servers:** Use Docker containers that include all dependencies
2. **Path accessibility:** Ensure server executables are available in the sandbox
3. **Network access:** Configure sandbox to allow necessary network connections
4. **Environment variables:** Verify required environment variables are passed through
### Debugging Tips
1. **Enable debug mode:** Run the CLI with `--debug_mode` for verbose output
2. **Check stderr:** MCP server stderr is captured and logged (INFO messages filtered)
3. **Test isolation:** Test your MCP server independently before integrating
4. **Incremental setup:** Start with simple tools before adding complex functionality
5. **Use `/mcp` frequently:** Monitor server status during development
## Important Notes
### Security Considerations
- **Trust settings:** The `trust` option bypasses all confirmation dialogs. Use cautiously and only for servers you completely control
- **Access tokens:** Be security-aware when configuring environment variables containing API keys or tokens
- **Sandbox compatibility:** When using sandboxing, ensure MCP servers are available within the sandbox environment
- **Private data:** Using broadly scoped personal access tokens can lead to information leakage between repositories
### Performance and Resource Management
- **Connection persistence:** The CLI maintains persistent connections to servers that successfully register tools
- **Automatic cleanup:** Connections to servers providing no tools are automatically closed
- **Timeout management:** Configure appropriate timeouts based on your server's response characteristics
- **Resource monitoring:** MCP servers run as separate processes and consume system resources
### Schema Compatibility
- **Property stripping:** The system automatically removes certain schema properties (`$schema`, `additionalProperties`) for Gemini API compatibility
- **Name sanitization:** Tool names are automatically sanitized to meet API requirements
- **Conflict resolution:** Tool name conflicts between servers are resolved through automatic prefixing
This comprehensive integration makes MCP servers a powerful way to extend the Gemini CLI's capabilities while maintaining security, reliability, and ease of use.
|