summaryrefslogtreecommitdiff
path: root/ms/ms.go
diff options
context:
space:
mode:
Diffstat (limited to 'ms/ms.go')
-rw-r--r--ms/ms.go51
1 files changed, 41 insertions, 10 deletions
diff --git a/ms/ms.go b/ms/ms.go
index 76b4b0a..0a91e04 100644
--- a/ms/ms.go
+++ b/ms/ms.go
@@ -16,35 +16,48 @@ package ms
import (
"math"
+ "sort"
"github.com/network-quality/goresponsiveness/saturating"
"github.com/network-quality/goresponsiveness/utilities"
"golang.org/x/exp/constraints"
)
-type MathematicalSeries[T constraints.Float | constraints.Integer] struct {
+type MathematicalSeries[T constraints.Float | constraints.Integer] interface {
+ AddElement(T)
+ CalculateAverage() float64
+ AllSequentialIncreasesLessThan(float64) (bool, float64)
+ StandardDeviation() (bool, T)
+ IsNormallyDistributed() bool
+ Size() int
+ Values() []T
+ Percentile(int) T
+}
+
+type CappedMathematicalSeries[T constraints.Float | constraints.Integer] struct {
elements_count int
elements []T
index int
divisor *saturating.SaturatingInt
}
-func NewMathematicalSeries[T constraints.Float | constraints.Integer](instants_count int) *MathematicalSeries[T] {
- return &MathematicalSeries[T]{
+func NewCappedMathematicalSeries[T constraints.Float | constraints.Integer](instants_count int) MathematicalSeries[T] {
+ return &CappedMathematicalSeries[T]{
elements: make([]T, instants_count),
elements_count: instants_count,
divisor: saturating.NewSaturatingInt(instants_count),
+ index: 0,
}
}
-func (ma *MathematicalSeries[T]) AddElement(measurement T) {
+func (ma *CappedMathematicalSeries[T]) AddElement(measurement T) {
ma.elements[ma.index] = measurement
ma.divisor.Add(1)
// Invariant: ma.index always points to the oldest measurement
ma.index = (ma.index + 1) % ma.elements_count
}
-func (ma *MathematicalSeries[T]) CalculateAverage() float64 {
+func (ma *CappedMathematicalSeries[T]) CalculateAverage() float64 {
total := T(0)
for i := 0; i < ma.elements_count; i++ {
total += ma.elements[i]
@@ -52,7 +65,7 @@ func (ma *MathematicalSeries[T]) CalculateAverage() float64 {
return float64(total) / float64(ma.divisor.Value())
}
-func (ma *MathematicalSeries[T]) AllSequentialIncreasesLessThan(limit float64) (_ bool, maximumSequentialIncrease float64) {
+func (ma *CappedMathematicalSeries[T]) AllSequentialIncreasesLessThan(limit float64) (_ bool, maximumSequentialIncrease float64) {
// If we have not yet accumulated a complete set of intervals,
// this is false.
@@ -80,7 +93,7 @@ func (ma *MathematicalSeries[T]) AllSequentialIncreasesLessThan(limit float64) (
/*
* N.B.: Overflow is possible -- use at your discretion!
*/
-func (ma *MathematicalSeries[T]) StandardDeviation() (bool, T) {
+func (ma *CappedMathematicalSeries[T]) StandardDeviation() (bool, T) {
// If we have not yet accumulated a complete set of intervals,
// we are always false.
@@ -120,7 +133,7 @@ func (ma *MathematicalSeries[T]) StandardDeviation() (bool, T) {
return true, sd
}
-func (ma *MathematicalSeries[T]) IsNormallyDistributed() bool {
+func (ma *CappedMathematicalSeries[T]) IsNormallyDistributed() bool {
valid, stddev := ma.StandardDeviation()
// If there are not enough values in our series to generate a standard
// deviation, then we cannot do this calculation either.
@@ -139,10 +152,28 @@ func (ma *MathematicalSeries[T]) IsNormallyDistributed() bool {
return within/float64(ma.divisor.Value()) >= 0.68
}
-func (ma *MathematicalSeries[T]) Values() []T {
+func (ma *CappedMathematicalSeries[T]) Values() []T {
return ma.elements
}
-func (ma *MathematicalSeries[T]) Size() int {
+func (ma *CappedMathematicalSeries[T]) Size() int {
return len(ma.elements)
}
+
+func (ma *CappedMathematicalSeries[T]) Percentile(p int) (result T) {
+ result = T(0)
+ if p < 0 || p > 100 {
+ return
+ }
+
+ // Because we need to sort the list to perform the percentile calculation,
+ // we have to make a copy of the list so that we don't disturb
+ // the time-relative ordering of the elements.
+
+ kopy := make([]T, len(ma.elements))
+ copy(kopy, ma.elements)
+ sort.Slice(kopy, func(l int, r int) bool { return kopy[l] < kopy[r] })
+ pindex := int64((float64(p) / float64(100)) * float64(ma.elements_count))
+ result = kopy[pindex]
+ return
+}