// Example shapes shows how to draw basic shapes into a window. // It can be considered the Go aequivalent of // https://x.org/releases/X11R7.5/doc/libxcb/tutorial/#drawingprim // Four points, a single polyline, two line segments, // two rectangle and two arcs are drawn. package main import ( "fmt" "github.com/jezek/xgb" "github.com/jezek/xgb/xproto" ) func main() { X, err := xgb.NewConn() if err != nil { fmt.Println(err) return } defer X.Close() setup := xproto.Setup(X) screen := setup.DefaultScreen(X) wid, _ := xproto.NewWindowId(X) draw := xproto.Drawable(wid) // for now, we simply draw into the window // Create the window xproto.CreateWindow(X, screen.RootDepth, wid, screen.Root, 0, 0, 180, 160, 8, // X, Y, width, height, *border width* xproto.WindowClassInputOutput, screen.RootVisual, xproto.CwBackPixel|xproto.CwEventMask, []uint32{screen.WhitePixel, xproto.EventMaskStructureNotify | xproto.EventMaskExposure}) // Map the window on the screen xproto.MapWindow(X, wid) // Up to here everything is the same as in the `create-window` example. // We opened a connection, created and mapped the window. // Note how this time the border width is set to 8 instead of 0. // // But this time we'll be drawing some basic shapes: // First of all we need to create a context to draw with. // The graphics context combines all properties (e.g. color, line width, font, fill style, ...) // that should be used to draw something. All available properties // // These properties can be set by or'ing their keys (xproto.Gc*) // and adding the value to the end of the values array. // The order in which the values have to be given corresponds to the order that they defined // mentioned in `xproto`. // // Here we create a new graphics context // which only has the foreground (color) value set to black: foreground, _ := xproto.NewGcontextId(X) mask := uint32(xproto.GcForeground) values := []uint32{screen.BlackPixel} xproto.CreateGC(X, foreground, draw, mask, values) // It is possible to set the foreground value to something different. // In production, this should use xorg color maps instead for compatibility // but for demonstration setting the color directly also works. // For more information on color maps, see the xcb documentation: // https://x.org/releases/X11R7.5/doc/libxcb/tutorial/#usecolor red, _ := xproto.NewGcontextId(X) mask = uint32(xproto.GcForeground) values = []uint32{0xff0000} xproto.CreateGC(X, red, draw, mask, values) // We'll create another graphics context that draws thick lines: thick, _ := xproto.NewGcontextId(X) mask = uint32(xproto.GcLineWidth) values = []uint32{10} xproto.CreateGC(X, thick, draw, mask, values) // It is even possible to set multiple properties at once. // Only remember to put the values in the same order as they're // defined in `xproto`: // Foreground is defined first, so we also set it's value first. // LineWidth comes second. blue, _ := xproto.NewGcontextId(X) mask = uint32(xproto.GcForeground | xproto.GcLineWidth) values = []uint32{0x0000ff, 4} xproto.CreateGC(X, blue, draw, mask, values) // Properties of an already created gc can also be changed // if the original values aren't needed anymore. // In this case, we will change the line width // and cap (line corner) style of our foreground context, // to smooth out the polyline: mask = uint32(xproto.GcLineWidth | xproto.GcCapStyle) values = []uint32{3, xproto.CapStyleRound} xproto.ChangeGC(X, foreground, mask, values) points := []xproto.Point{ {X: 10, Y: 10}, {X: 20, Y: 10}, {X: 30, Y: 10}, {X: 40, Y: 10}, } // A polyline is essientially a line with multiple points. // The first point is placed absolutely inside the window, // while every other point is placed relative to the one before it. polyline := []xproto.Point{ {X: 50, Y: 10}, {X: 5, Y: 20}, // move 5 to the right, 20 down {X: 25, Y: -20}, // move 25 to the right, 20 up - notice how this point is level again with the first point {X: 10, Y: 10}, // move 10 to the right, 10 down } segments := []xproto.Segment{ {X1: 100, Y1: 10, X2: 140, Y2: 30}, {X1: 110, Y1: 25, X2: 130, Y2: 60}, {X1: 0, Y1: 160, X2: 90, Y2: 100}, } // Rectangles have a start coordinate (upper left) and width and height. rectangles := []xproto.Rectangle{ {X: 10, Y: 50, Width: 40, Height: 20}, {X: 80, Y: 50, Width: 10, Height: 40}, } // This rectangle we will use to demonstrate filling a shape. rectangles2 := []xproto.Rectangle{ {X: 150, Y: 50, Width: 20, Height: 60}, } // Arcs are defined by a top left position (notice where the third line goes to) // their width and height, a starting and end angle. // Angles are defined in units of 1/64 of a single degree, // so we have to multiply the degrees by 64 (or left shift them by 6). arcs := []xproto.Arc{ {X: 10, Y: 100, Width: 60, Height: 40, Angle1: 0 << 6, Angle2: 90 << 6}, {X: 90, Y: 100, Width: 55, Height: 40, Angle1: 20 << 6, Angle2: 270 << 6}, } for { evt, err := X.WaitForEvent() switch evt.(type) { case xproto.ExposeEvent: // Draw the four points we specified earlier. // Notice how we use the `foreground` context to draw them in black. // Also notice how even though we changed the line width to 3, // these still only appear as a single pixel. // To draw points that are bigger than a single pixel, // one has to either fill rectangles, circles or polygons. xproto.PolyPoint(X, xproto.CoordModeOrigin, draw, foreground, points) // Draw the polyline. This time we specified `xproto.CoordModePrevious`, // which means that every point is placed relatively to the previous. // If we were to use `xproto.CoordModeOrigin` instead, // we could specify each point absolutely on the screen. // It is also possible to use `xproto.CoordModePrevious` for drawing *points* // which means that each point would be specified relative to the previous one, // just as we did with the polyline. xproto.PolyLine(X, xproto.CoordModePrevious, draw, foreground, polyline) // Draw two lines in red. xproto.PolySegment(X, draw, red, segments) // Draw two thick rectangles. // The line width only specifies the width of the outline. // Notice how the second rectangle gets completely filled // due to the line width. xproto.PolyRectangle(X, draw, thick, rectangles) // Draw the circular arcs in blue. xproto.PolyArc(X, draw, blue, arcs) // There's also a fill variant for all drawing commands: xproto.PolyFillRectangle(X, draw, red, rectangles2) case xproto.DestroyNotifyEvent: return } if err != nil { fmt.Println(err) return } } }